Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Омский государственный университет им. Ф.М. Достоевского

Физический факультет

Кафедра экспериментальной физики и радиофизики

Кнор Артур Сергеевич

Разработка конструкции высокоэффективной системы охлаждения для блока фильтра гармоник мощного РПДУ

Курсовая работа

Научный руководитель Преподаватель КЭФиР Абрамова Е.Г.

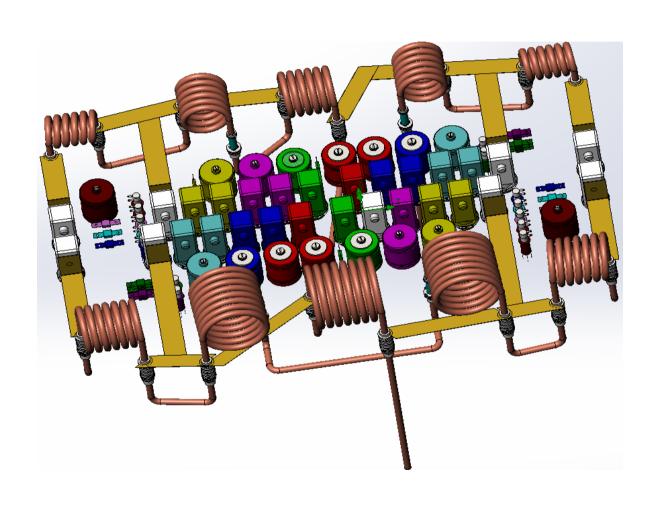
Практическое применение

Конструкции радиоэлектронных аппаратов, их система охлаждения, габариты и условия эксплуатации весьма разнообразны. Процесс переноса тепловой энергии от источников тепла (радиодеталей) внутри аппарата в окружающую аппарат среду очень сложен и зависит от многих факторов. Для создания оптимальной конструкции аппарата необходимо иметь возможность в процессе проектирования оценить как тепловой режим разрабатываемого устройства, так и влияние на него физических и геометрических параметров.

Цель и задачи

Цель: Разработка конструкции высокоэффективной системы охлаждения для блока фильтра гармоник мощного РПДУ, на основе анализа распределения потока жидкости, протекающего по катушкам индуктивности, и температурного поля.

Задачи:

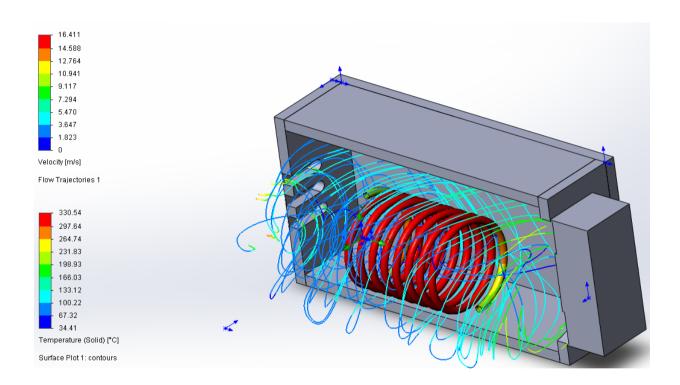

- анализ имеющихся на данный момент моделей охлаждения для блока фильтра гармоник мощного РПДУ
- ознакомиться с основными характеристиками теплового расчета
- изучить особенности теплового излучения катушек индуктивности
- произвести численный расчет нагревания катушек индуктивности

Оптимизация фильтра

Обычно для таких передатчиков строится пяти диапазонный фильтр Кауэра, который состоит из трех контуров. С точки зрения охлаждения получается сложная задача, так как схема будет содержать 15 катушек индуктивности, что в свою очередь увеличивает стоимость разработки и приводит к необходимости охлаждения большого количества стоечных блоков. В ходе оптимизации схемы была произведена минимизация количества контуров, таким образом, конструкция фильтра гармоник содержит один контур жидкостного охлаждения, состоящий из 10 катушек индуктивности[4].

После оптимизации схемы фильтра гармоник разработчики остановились на схеме состоящий из двух поддиапазонов, в основе которых лежит полосовая схема с дискретными конденсаторами. Каждый поддиапазон состоит из 5 катушек индуктивностей, последовательно соединенных друг с другом и реализованных из медной трубки диаметром 9,52 мм. Конструкция фильтра, построенного по такой схеме, является более простой в изготовлении и экономичной. Однако при всех достоинствах недостатком данной схемы является увеличение токов, протекающих через элементы[4].

Фильтр гармоник РПДУ на 20 кВт



Воздушное охлаждение

Методика исследования катушки с воздушным охлаждением представляет собой следующую последовательность:

- Построение модели катушки индуктивности в специализированной САПР инженерного анализа процессов гидро- и газодинамики.
- Задаем физические свойства вещества, материалы конструкций, граничные условия и параметры расчета.
- Анализ катушки производился при температуре окружающей среды равной +20°C. Рабочее вещество атмосферный воздух.
- Использовались два типа граничных условий.
- Первое граничное условие массовый расход газа во входном патрубке кондиционера.
- Второе граничное условие атмосферное давление на выходе из коробки
- Давление не изменялось.
- Задаем мощность на катушке.
- Далее осуществляется непосредственно расчет модели методом конечных элементов.
- После расчета происходит обработка полученных данных и отображение необходимых результатов.

РАСПРЕДЕЛЕНИЕ ТЕПЛОВОГО ПОЛЯ НА КАТУШКАХ В КОРОБКЕ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ

Из рисунка видно, что при заданных мощностях температура катушек составляет более 300°С, такой способ охлаждения очевидно не может быть использован, так как изменения геометрии трубки в результате теплового расширения приведут к изменению электрических параметров катушка индуктивности более чем на 1%.

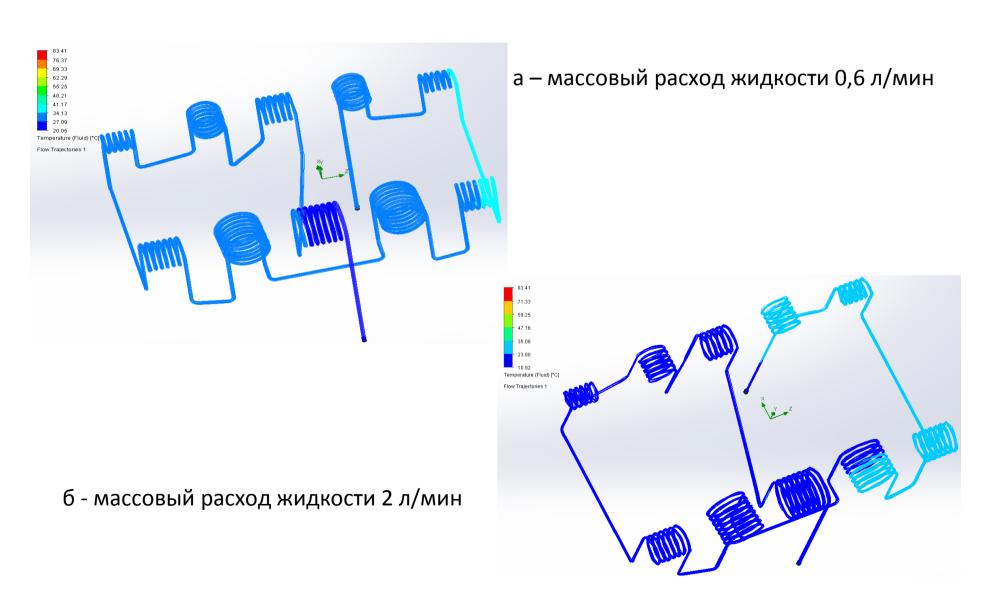
Жидкостное охлаждение

Система жидкостного охлаждения, применяется в теплонагруженных модулях радиопередающих устройств мощностью 20 кВт и более. В качестве теплоносителя могут быть применены растворы на основе воды. Основной недостаток таких теплоносителей состоит в том, что их использование приводит к образованию ржавчины, накипи, а это, в свою очередь, ведет к поломке системы, поэтому используются смеси с этиленгликолем, с солями-ингибиторами, улучшающими качество раствора и обеспечивающими наиболее высокие значения коэффициента теплообмена.

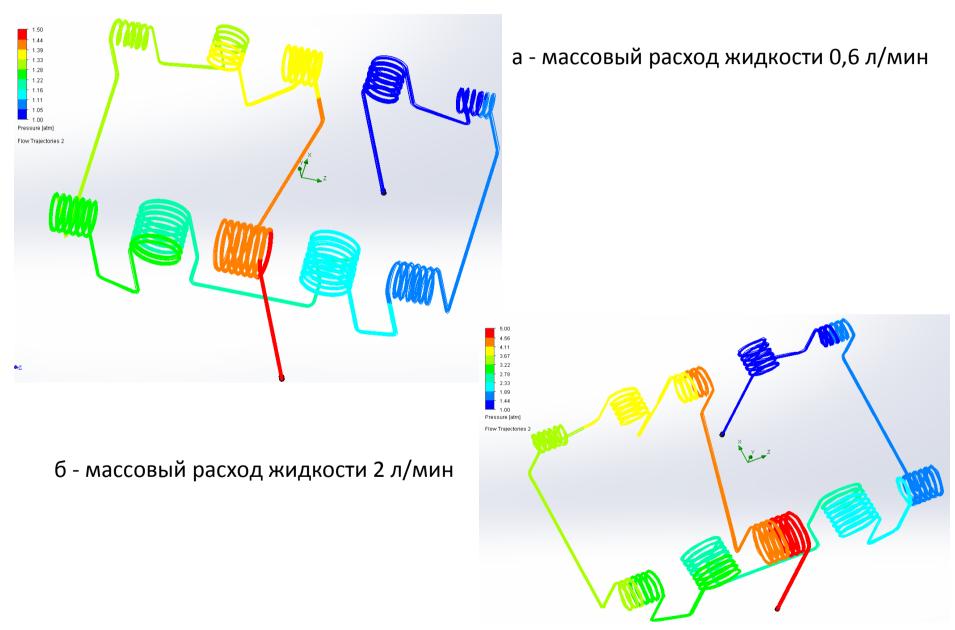
В ряде систем с жидкостным контуром охлаждения используют дистиллированную воду. Дистилляция воды и ее фильтрация для очистки от образующихся при работе примесей необходимы для предотвращения образования накипи, засорений системы.

В качестве рабочего вещества, протекающего через замкнутый контур, состоящий из катушек индуктивности, используется масло ПМС-50, т.к. оно имеет наименьшую вязкость.

Преимущества жидкостных систем охлаждения


- У воды более высокая теплоемкость, чем у воздуха.
- Уровень шума значительно ниже, чем при использовании принудительного воздушного охлаждения.
- Естественная и принудительная конвекция требует объема, более чем 50 раз превышающего объема жидкостного охлаждения.
 - Но существуют и недостатки:
- Возрастают затраты на электроэнергию.
- Высокая цена при разработке новых конструктивных вариантов водоблоков.

Методика исследования при жидкостном охлаждении


- Построение модели катушки индуктивности в специализированной САПР инженерного анализа процессов гидро- и газодинамики.
- Задаем физические свойства вещества, материалы конструкций, граничные условия и параметры расчета.
- Анализ производился при температуре окружающей среды равной +20°C.
 Рабочее вещество масло ПМС-50.
 - Использовались два типа граничных условий.
 - Первое граничное условие массовый расход жидкости во входной трубке катушки индуктивности.
 - Второе граничное условие атмосферное давление на выходе из трубки катушки индуктивности.
 - Задаем мощности на катушках.
- Далее осуществляется непосредственно расчет модели методом конечных элементов.
- После расчета происходит обработка полученных данных и отображение необходимых результатов.

Расчет модели производился для каждого из поддиапазонов при различных расходах жидкости (0,3; 0,6; 2 л/мин).

Картина распределение температурного поля потока жидкости по катушкам индуктивности при включенном первом поддиапазоне:

Картина распределения давления жидкости по катушкам индуктивности при включенном первом диапазоне

Результаты работы

Как видно из рисунков, при расходе жидкости 2 л/мин, давление воды возросло до 5 атм., что не благоприятно сказывается на системе жидкостного охлаждения. При значении 0,6 л/мин атмосферное давление остается в пределах нормы до 1,5 атм. Температура жидкости не превышает 100°С, что соответственно удовлетворяет требованиям по температурной стабильности.

В результате моделирования конструкции фильтра гармоник было определено оптимальное соотношение между расходом жидкости, температурой и давлением в системе охлаждения, также в ходе работы был найден способ упрощения конструкции фильтра с точки зрения его изготовления без ухудшения электрических характеристик.

Список литературы

- Гелль П.П. Конструирование радиоэлектронной аппаратуры. «Энергия», 1972.
- Дульнев Г.Н. Теплообмен в радиоэлектронных аппаратах. «Энергия», 1968.
- Дульнев Г.Н. Теплообмен в радиоэлектронных устройствах. Москва, 1963.
- Жумбакова Э.А. «Оптимизация конструкции фильтра гармоник для РПДУ мощностью 20 кВт».
- Шахгильдян В.В., Радиопередающие устройства: учебник для вузов. М: Радио и связь, 2003,- 560 с.
- ГОСТ 13032-77. Жидкости полиметилсилоксановые; введ. 01.01.79. М.: ИПК Изд-во стандартов, 1997.-16 с.

Спасибо за внимание